If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-16x-96=0
a = 4; b = -16; c = -96;
Δ = b2-4ac
Δ = -162-4·4·(-96)
Δ = 1792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1792}=\sqrt{256*7}=\sqrt{256}*\sqrt{7}=16\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16\sqrt{7}}{2*4}=\frac{16-16\sqrt{7}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16\sqrt{7}}{2*4}=\frac{16+16\sqrt{7}}{8} $
| 3(x)+10=37 | | 3(x)+10=7 | | -7(u+3)=5u+3 | | 65=20+15t | | -8(3x-5)=112 | | 3(x+6)+7=32 | | -1+a-4+7a=6a+7a | | -159=3(8r-4)-3 | | -6v-6=8(v+8) | | D×d-7d-24=0 | | 8x-3+2x=7x-15 | | x/27=21 | | |3x+9|=21 | | 2x+2(2x-4)=243 | | -5(u+6)=9u+12 | | -2r+7-8r=3(-6r-7)-(r+8) | | 4m+5=25m= | | 4x-12+3x=9 | | 2.556x=-12.44025 | | -1/7-3/2x=3/2 | | 36+2x=58 | | -21(5b+18)+18b=-75 | | 4(0.5x+10)/3=2(x-4) | | 7^3x+1=49^x-1 | | -21(15b+18)+18b=-75 | | 4x+4=4x+28 | | -9=-5+1/4y | | w/3+1=-2 | | 11/121=3/x. | | 2.5n-9=-4 | | 150x=1120 | | 2+3(x=1)=6x |